高效的用户访问预测新算法

来源 :西安交通大学学报 | 被引量 : 0次 | 上传用户:ffgghhaz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对基于Web日志挖掘的用户访问预测经典算法的不足,提出了基于Markov链和关联规则的预测算法(MAPA).使用二阶Markov链找到用户下一步或将来可能访问的页面集,生成预测候选集;使用二项关联规则从正向和反向2个角度修正Markov的预测结果,从而生成最后的预测页面.通过引入用户反馈机制,提出了带反馈的Markov预测算法(MPAF),即在预测过程中逐步构造历史预测树,把历史预测信息保存到历史预测树中,并根据用户的反馈来判断预测的正确性.在预测过程中,用二阶Markov预测算法生成预测候选集,再利用
其他文献
为了减小乘法器量化噪声对认知无线电信道检测性能的影响并节省芯片面积,提出一种高精度的固定位宽基-4Booth(FBB-4B)乘法器结构.该乘法器的截断部分被分为保留、自适应补偿和
针对应用支持向量回归对不确定控制系统在线建模时精度受异常数据影响的问题,通过分析不同样本分布情况下异常数据的影响,指出增加异常数据邻域的样本密度可以有效地提高建模