TiO2改性煤气化粗渣基地质聚合物的微观结构与性能

来源 :硅酸盐通报 | 被引量 : 0次 | 上传用户:zhoubin_
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
煤气化渣可分为粗渣和细渣,其有在碱激发领域应用的潜力.本文对煤气化粗渣的理化性能进行了研究,使用煤气化粗渣制备了地质聚合物,并对其进行了TiO2的改性研究.结果表明,在煤气化粗渣基地质聚合物中掺入一定量的TiO2可明显改善其力学性能.当掺入质量分数为10.0%的TiO2时,样品28 d的抗压强度可从23.4 MPa提高到42.9 MPa.此外,通过对样品进行物相分析与微观结构分析,TiO2的掺入明显改善了地质聚合物的微观结构,促进了碱激发反应,提高了材料的力学性能.
其他文献
不锈钢被广泛运用于氢能的制造、输送、储藏领域,其中氢脆敏感性是不锈钢长期在高压氢环境中使用所面临的关键性问题.介绍了奥氏体不锈钢氢脆的试验方法、形成机理和铁素体对奥氏体不锈钢氢脆敏感性影响,并对其研究趋势进行了展望.
为了提高抹灰砂浆的强度和体积稳定性,研究了水泥用量和灰渣比(循环硫化床(CFB)飞灰和CFB炉渣的质量比)对CFB灰渣抹灰砂浆2 h稠度损失率、抗压强度和体积稳定性的影响,并采用扫描电子显微镜、X射线能谱仪和X射线衍射仪对砂浆的微观形貌、元素分布和物相组成进行测试表征.结果表明,当水泥用量为5%、8%、12%(质量分数)时,CFB灰渣抹灰砂浆分别达到抹灰砂浆M10、M15、M20的强度等级.当胶凝材料用量一定时,随着水泥用量增大,砂浆2h稠度损失率减小;当水泥用量一定时,随着灰渣比增大,砂浆2h稠度损失率
本试验研究了超细高活性矿物掺合料(超细掺合料)与硅灰以单掺、复掺的方式制备超高性能混凝土(UHPC),分析了复掺不同掺量超细掺合料对UHPC的工作性、力学性能、水化热和收缩性能的影响.结果表明:UHPC流动性随超细掺合料掺量的增加而增加,跳桌流动度最高为275 mm;将超细掺合料与质量分数为10%的硅灰以复掺的方式制备UHPC时,随超细掺合料掺量的增加,UHPC抗折强度先增加后降低,抗压强度先增加后趋于平稳,最大抗折强度和抗压强度分别为25.9 MPa和150.0 MPa;超细掺合料与质量分数为10%的硅
通过测试不同盐冻循环次数后超硫水泥混凝土的表面剥落质量和超声波相对动弹性模量,并对气泡结构参数进行表征,系统探究了引气剂对超硫水泥混凝土抗盐冻性能的影响规律,以及弱碱性激发剂——乳酸钠对超硫水泥混凝土抗盐冻性能的提升效果.研究结果表明,添加引气剂可有效提高超硫水泥混凝土抗盐冻性能,但会降低强度,复合掺加乳酸钠可避免强度降低.加入胶凝材料质量0.3%的引气剂,剥落质量仅为919.7 g/m2,较基准组降低了36.8%,且超声波相对动弹性模量未明显降低.引气剂的加入,改善了超硫水泥混凝土的气孔结构,降低了内部
制备一种低成本、环保型焚烧垃圾渣超高性能混凝土(UHPC).根据修正后的Andreasen and Andersen模型进行配合比设计,将处理后焚烧垃圾渣替代河砂,制备不同替换率超高性能混凝土,并对其进行工作性能、力学性能、孔隙特征、水化过程、微观特征以及毒性固结性能测试.结果表明,随着垃圾渣的加入,UHPC的工作性能和抗压强度有所下降,但流动性不低于240 mm,抗压强度不低于117 MPa,累计孔隙含量增加,孔隙大部分分布在<20 nm无害孔范围内,混凝土界面过渡区裂缝增多,混凝土中锌(Zn)、铅(P
为了更好地实现对重金属污泥的资源化利用,研究了高温无害化处理重金属污泥与建筑渣土混合渣料磨细粉对硅酸盐水泥基材料工作性、力学性能、早期收缩变形、抗氯离子渗透性能及重金属浸出的影响及机理.研究结果表明,随着磨细粉掺量的增加,硅酸盐水泥基材料的工作性没有降低,但其力学性能均有一定程度下降,这说明磨细粉与硅酸盐水泥的需水比相差不大,但其掺量越大水泥基材料中水泥的量越低,其强度均会有一定程度下降.磨细粉不会引起硅酸盐水泥基材料的体积安定性问题,可以提高早期抗裂性,但会降低其抗氯离子渗透性能.含磨细粉试件中重金属的