【摘 要】
:
为解决复杂融合空域内的无人机(unmanned aerial vehicle,UAV)冲突解脱过程中消耗大的问题,提出基于速度障碍法的合作型无人机的最优防相撞策略.首先根据有限时间的速度障碍法进行冲突探测,并推导出解脱条件下冲突双方航向改变量与速度大小改变量满足的关系,再将合作博弈概念用在冲突解脱过程中,利用最优化理论,将联盟福利最优解作为博弈双方最优解脱策略.该冲突解脱算法基于无人机冲突双方最小机动与满足自身性能约束的原则,实现支付代价最小前提下的实时冲突解脱.仿真结果表明该算法在不同冲突场景下具有可行
【机 构】
:
空军工程大学 空管领航学院,西安 710051;国家空管防相撞技术重点实验室,西安 710051;空军工程大学 空管领航学院,西安 710051
论文部分内容阅读
为解决复杂融合空域内的无人机(unmanned aerial vehicle,UAV)冲突解脱过程中消耗大的问题,提出基于速度障碍法的合作型无人机的最优防相撞策略.首先根据有限时间的速度障碍法进行冲突探测,并推导出解脱条件下冲突双方航向改变量与速度大小改变量满足的关系,再将合作博弈概念用在冲突解脱过程中,利用最优化理论,将联盟福利最优解作为博弈双方最优解脱策略.该冲突解脱算法基于无人机冲突双方最小机动与满足自身性能约束的原则,实现支付代价最小前提下的实时冲突解脱.仿真结果表明该算法在不同冲突场景下具有可行性、实时性与高效性.
其他文献
区块截留攻击又称扣块攻击,是存在于区块链中的一种攻击方式,攻击者通过渗透进目标矿池中进行消极挖矿以达成破坏目标矿池的目的.简要介绍了挖矿机制和区块截留攻击的工作原理,总结了区块截留攻击的几种模型,并对现有的区块截留攻击模型的攻击方式和收益进行了研究,分析出其攻击效果.构造了一个在提升收益率的同时提升收益速度的区块截留攻击模型,通过仿真挖矿实验验证其所构造的模型,并围绕收益速度和收益率对典型模型和所构造模型进行对比和分析.基于实验的结果,给出了不同的攻击模型所适用的环境.
为了在复杂火场环境下获取消防员的精确位置,提出基于超宽带(ultra-wideband,UWB)的消防员室内协同定位算法,充分利用目标到UWB基站以及到其他目标的测距信息进行定位.采用线性拟合方式对测量距离中存在的标准偏差进行预处理;针对目标位置解算及非视距(non-line-of-sight,NLOS)误差缓解问题,提出基于偏移扩展卡尔曼滤波的协同定位算法,根据待定位目标之间的内在联系,建立新的状态方程和量测方程,并通过构造的系数矩阵调整卡尔曼增益,修正偏离的位置估计值;针对定位坐标跳变问题,提出基于阈
基于机器学习的僵尸网络流量检测是现阶段网络安全领域比较热门的研究方向,然而生成对抗网络(generative adversarial networks,GAN)的出现使得机器学习面临巨大的挑战.针对这个问题,在未知僵尸网络流量检测器模型结构和参数的假设条件下,基于生成对抗网络提出了一种新的用于黑盒攻击的对抗样本生成方法.该方法提取网络流量的统计特征,利用生成对抗网络思想,通过训练替代判别器和生成器,来拟合不同类型的黑盒僵尸网络流量检测器和生成可以规避黑盒僵尸网络流量检测器的对抗样本.生成的对抗样本是在原始
针对许多检测模型受到数据不平衡和异常数据的复杂性等因素影响问题,提出一种以生成对抗网络(gener-ative adversarial network,GAN)为基础的数据异常检测方法.该方法利用InfoGAN网络训练生成正常数据和异常数据,构造一个推理神经网络作为生成数据与原始数据的标签生成器,之后利用第二个GAN网络对推理网络精调,保证生成的样本和其标签对应;最后将生成样本与标签输入随机森林分类,通过Hyperband算法寻找随机森林最优超参,对推理网络进一步优化.在四个真实数据集上与五种传统机器学习
针对单一模态情感识别精度低的问题,提出了基于Bi-LSTM-CNN的语音文本双模态情感识别模型算法.该算法采用带有词嵌入的双向长短时记忆网络(bi-directional long short-term memory network,Bi-LSTM)和卷积神经网络(convolutional neural network,CNN)构成Bi-LSTM-CNN模型,实现文本特征的提取,将其与声学特征融合结果作为联合CNN模型的输入,进行语音情感计算.基于IEMOCAP多模态情感检测数据集的测试结果表明,情感识
运动想象识别将大脑的神经活动信号转为编码输出以实现意念控制,是脑机接口的一个重要研究方向.近年来深度学习算法的应用进一步提高了运动想象识别的准确率,但是当前基于深度学习的运动想象分析都将多路脑电信号作为二维矩阵信号,忽视了不同节点的空间关联信息.为了解决这个问题,将图卷积网络算法应用到运动想象分类中,通过多个节点脑电信号的相关系数建立脑电图结构,提取脑电信号的时频域特征信息作为输入,再经过图卷积网络进行节点特征聚合以学习谱域特征,最后通过全连接层输出分类结果.该方法在BCI Competition IV
近年来针对合成孔径雷达(synthetic aperture radar,SAR)图像中缺乏颜色和纹理细节的舰船检测技术在深度学习领域中得到了广泛研究,利用深度学习技术可以有效避免传统的复杂特征设计,并且检测精度得到极大改善.针对舰船目标检测框具有高长宽比和密集排列问题,提出一种基于改进YOLOv5的目标检测方法.该方法针对舰船目标检测框特点将检测框长宽作为参数进行综合考虑并对损失函数进行曲线优化,并结合坐标注意力机制(coordinate attention,CA),在模型轻量化的同时实现对舰船目标检测
抓取是机器人在服务与工业领域中进行人机协调的重要能力,得到一个准确的抓取检测结果是机械臂能否完成抓取任务的关键.为了提高抓取检测的准确率以及实时性,提出了一种由CenterNet改进的基于关键点估计的抓取检测算法.在网络的特征提取层使用了特征融合方法融合不同的特征图,减少特征的丢失;增加了角度预测分支用来预测抓取角度;使用了改进的Focal Loss,减少由于正负样本不均衡导致的模型准确度降低.与基于锚框的抓取检测算法穷举目标潜在位置再进行回归的方式不同,基于关键点估计的抓取检测算法直接预测抓取关键点,并
上市公司年报中的描述性文本信息是上市公司信息披露的重要组成部分,通过对上市公司信息披露文本的挖掘与分析可以提高对其财务风险的预测能力.基于BERT(bidirectional encoder representations from transformer)模型与自编码器(autoencoder,AE),提出了BERT-AE融合文本特征提取模型,提取A股市场531家上市公司年报中“经营情况讨论与分析”和“审计报告”的文本特征,构建能够反映财务困境公司与正常公司的文本特征指标,随后将文本特征指标与财务指标数
在人到货订单拣选系统中,客户下达订单后将由拣货员穿梭仓库进行拣选.在仓库的拣选设备容量和拣货人员数量有限制的条件下,研究在线订单分批优化问题,预防订单过早或延迟服务,以最短的时间完成拣货任务.构建考虑最小拣货路径的在线订单分批规划模型,以最小化平均有效订单服务时间.提出一种基于规则的启发式算法来求解模型,其中包含k-means聚类算法和遗传算法,分别处理订单的分批和拣选路径的规划.最后利用具体算例进行模拟计算,实验结果表明,与传统固定时间窗启发式算法相比,提出的基于规则的启发式算法能够显著提高拣货效率.