论文部分内容阅读
The effects of chloride anion (C1-) (up to 1.0 mol/L) on the decolorization of a model compound,azo dye Acid Orange 7 (AO7),by sulfate radical (SO4-*) based-peroxydisulfate (PS) or peroxymonosulfate (PMS) oxidation under various activated conditions (UV254 nm/PS,Thermal (70℃/PS,UV254 nm/PMS,Co2+/PMS) were investigated.Methanol and NH4+ were used as quenching reagents to determine the contributions of active chlorine species (dichloride radical (Cl2-*) and hypochlorous acid (HClO)).The results indicated that the effects of Cl- on the reaction mechanism were different under various activated conditions.For UV/PS and Thermal/PS,the inhibition tendency became more clear as the Cl-concentration increased,probably due to the reaction between Cl- and SO4-* and the generation of Cl2-* or HClO.For UV/PMS,Cl- did not exhibit inhibition when the concentration was below 0.1 mol/L.As Cl-concentration reached to 1.0 mol/L,the decolorization rate of AO7 was,however,accelerated,possibly because PMS directly reacts with C1- to form HC1O.For Co2+/PMS,Cl- exhibited a significant inhibiting effect even at low concentration (≤ 0.01 mol/L).When Cl- concentration exceeded 0.1 mol/L,the activation of PMS by Co2+ was almost completely inhibited.Under this condition,HClO maybe played a major role in decolorization of AO7.The results implicated that chloride ion is an important factor in SO4-*-based degradation of organic contamination in chloride-containing water.