论文部分内容阅读
针对大词汇量连续语音识别中识别率不高的问题,提出了将语音增强级联在识别系统前端,在语音增强中将谱减法和对数最小均方误差算法(10gmmse)与用于噪声估计的最小控制递归平均算法(imcra)相结合。识别系统使用Mel频率倒谱系数(MFCC)提取特征,用隐马尔科夫模型(HMM)训练与识别。实验结果表明,该方法最高能使单词识别率提高38.9%,使句子正确率提高21.8%。该方法用于大词汇量连续语音识别是可行有效的。