论文部分内容阅读
针对Kim的算法在简化散乱点云时经常丢失过多几何特征的不足,提出一种改进的精简方法。首先对点云进行最小二乘抛物面拟合求出所有点的主曲率;然后以数据点主曲率的Hausdorff距离为依据,提取并保留点云中的特征点;最后对具有不同特征的测量数据进行了精简分析。仿真实验结果表明,改进方法既能较大程度地简化数据点云,简化结果比较均匀,又具有不破坏细小特征的特点,能够充分保留原始点云中的几何特征;而且在保证简化质量的前提下提高了算法的效率。该方法能够为后续的三维重建提供有效的数据信息,节约后续工作的处理时间和