论文部分内容阅读
针对传统基于Bayes决策规则的遥感影像变化检测方法中参数估计的不足以及分类过程中的硬划分问题,采用动态更新变化和未变化两类像元模糊子集的方法,实现对两类像元模糊子集中参数的动态更新,利用估计参数获得各子集的后验概率函数,再将后验概率函数转化为模糊子集的模糊隶属函数,从而获得各子集的指标函数,根据指标函数对影像中未分类的像元值进行判断,实现遥感影像的变化区域提取。实验结果表明:与现有的基于Bayes决策规则的遥感影像变化检测方法及ERDAS软件生成结果相比,提出的方法具有更好的变化检测精度。