论文部分内容阅读
针对局部立体匹配方法存在的匹配窗口大小选择困难、弱纹理或高光区域立体匹配精度较低等问题,文中结合卷积神经网络(CNN)与图像金字塔方法,提出多尺度融合的立体匹配算法.训练CNN,用于自动学习待匹配图像对的图像特征,完成匹配代价计算.构建图像金字塔,对待匹配图像对进行多尺度表达.构建弱纹理区域模板,将各层待匹配图像划分为弱纹理区域和丰富纹理区域,将弱纹理区域图像变换成小尺度图像进行匹配度计算,降低弱纹理图像的误匹配率.在变换回大尺度图像时与丰富纹理区域匹配结果融合,保持匹配精度.在KITTI数据集上的