基于IAGA-SVM的捣固车液压系统故障诊断研究

来源 :计算机应用与软件 | 被引量 : 8次 | 上传用户:luan0778
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统液压系统故障诊断方法受人为因素影响较为严重,故障成因相对复杂等问题。提出一种改进的自适应捣固车液压系统故障诊断方法。首先,从捣固车的车载数据中采集系统抽取出来的故障特征值。其次,将特征值输入支持向量机(SVM)模型中进行训练,同时对核函数和惩罚系数做出优化。最后,应用自适应支持向量机建立从特征向量到故障模式之间的映射,最终做到对液压系统的故障诊断。结果可得,此方法可以准确高效地诊断出故障类型,证明了此方法的实用价值。此外,经过与GA-SVM以及AGA-SVM的对比剖析,表明了IAGA-SVM
其他文献
为进一步提高基于图像稀疏表示的飞机目标检测算法的时间性能与精确度,提出了基于多尺度核索引字典的飞机目标检测算法,分别从超完备字典结构、目标检测分类器结构两方面优化算法。首先引入基于高斯径向核函数的硬C聚类方法,构造核索引字典,在提升稀疏求解算法时间性能的同时,提高了索引字典原子聚类的准确度。接着基于核索引字典,构建多尺度分类器,进一步提高了算法的效率和精度。实验表明,在合理选择聚类数后,采用核索引
提出一种基于整体植物外观特征提取的植物自动识别方案。首先,用普残差法对植物图像进行显著性区域检测,较粗略地得到植物对象,再结合色调信息进行细分割。接着提取该对象区域的SIFT特征作为底层局部特征,建立视觉词包模型,最后设计分类器进行分类。选取了9种常见的室内盆栽,每种植物各28个样本。在实验中,分别对比当前流行的BP神经网络、SVM和ELM三种分类器的分类性能。实验结果发现,支持向量机和极限学习机
那是初夏的6月,暮色四合,在清华大学西南的某个小区里,一位华发满头的老太太,穿着天蓝色的衣裙,站在自家的院子里,默默收起晾干的衣服,夕阳斜斜打在周遭的篱笆和爬藤植物上。沉默寡