论文部分内容阅读
针对传统液压系统故障诊断方法受人为因素影响较为严重,故障成因相对复杂等问题。提出一种改进的自适应捣固车液压系统故障诊断方法。首先,从捣固车的车载数据中采集系统抽取出来的故障特征值。其次,将特征值输入支持向量机(SVM)模型中进行训练,同时对核函数和惩罚系数做出优化。最后,应用自适应支持向量机建立从特征向量到故障模式之间的映射,最终做到对液压系统的故障诊断。结果可得,此方法可以准确高效地诊断出故障类型,证明了此方法的实用价值。此外,经过与GA-SVM以及AGA-SVM的对比剖析,表明了IAGA-SVM