论文部分内容阅读
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)_2,CaO和Ba(OH)_2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)_2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)_3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)_2和La(OH)_3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)_2和La(OH)_3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)_2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)_2用量增加而增加;当OH~-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)_3为添加剂时,即使La(OH)_3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)_3用量,对乳酸的选择性影响不大;当OH~-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)_2相比,La(OH)_3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)_3可高效促进山梨醇加氢转化.为了探索Ca(OH)_2或La(OH)_3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)_2为添加剂时,乳酸选择性是以La(OH)_3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)_2为添加剂时,加氢反应和重排反应均可发生,而以La(OH)_3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.