论文部分内容阅读
根据Helsenberg对应原理(HCP),在经典极限下厄密算符的量子矩阵元对应经典物理量的Fourier展开系数.将HCP应用到相对论领域的Dirac方程中,对于自由粒子和在匀磁场中的带电粒子,其量子算符的矩阵元在经典极限下对应着相对论物理方程的解.计算表明,在经典极限下量子期望值就是对应经典物理量的时间平均值.