基于累积正样本的偏斜数据流集成分类方法

来源 :计算机与现代化 | 被引量 : 1次 | 上传用户:the4eye
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有处理偏斜数据流的方法存在过拟合或者未充分利用现有数据这一问题,提出一种基于累积正样本的偏斜数据流集成分类方法 EAMIDS。该算法把目前达到的所有数据块的正样本收集起来生成集合AP,然后采用KNN算法和Over-sampling方法来平衡数据块的类分布。当基分类器数量超过最大值时,根据F-Measure值来更新集成分类器。通过在模拟数据集SEA和SPH上的实验,与IDSL算法和SMOTE算法相比,表明EAMIDS具有更高的准确率。
其他文献
在区域供热(DH)网络中,精确预测热负荷已被认为是提高效率和节省成本的重要环节。为了提高预测精度,研究不同影响因素对热负荷预测的影响极为重要。使用引入不同影响因素的数
针对传统协同过滤推荐算法的不足,提出一种新的推荐算法,该算法重新诠释专家与用户的关系。首先,结合全局专业指数和局部活跃指数定义专家的条件,再选取合适的比例组成专家组
考虑到杀毒软件查杀病毒需要一定的时间周期,以及免疫主机对网络病毒的临时免疫力,本文基于SIQR网络病毒传播模型提出一类时滞SIQRS网络病毒传播模型。以杀毒软件查杀病毒需要