论文部分内容阅读
提出一种基于支持向量机(SVM)的三维LiDar数据分类方法:利用kd-trees存储无序的点云数据,在局部邻域中利用点云数据间的几何关系估算植被表面特征值;将密度值和高程差值作为SVM输入特征变量,利用基于径向基函数的SVM方法实现植被点云数据的分类.实验结果为:OA分类精度达到94.31%,Kappa系数为89.53%.该方法操作性较强,在分类精度及计算效率方面比传统方法具有优势.