论文部分内容阅读
针对传统俯视行人检测方法提取的头部特征单一、检测错误率高的问题,提出了结合改进聚合通道特征(ACF)和灰度共生矩阵(GLCM)的俯视行人检测算法。首先,将提取到的HSV颜色特征、梯度幅值大小以及改进后的梯度方向直方图(HOG)特征组合成ACF描述子;然后,采用窗口法计算改进的GLCM参数描述子,提取纹理特征,串联每个窗口的特征向量得到共生矩阵特征描述子;最后,将聚合通道和共生矩阵特征分别输入Adaboost训练得到分类器,并进行检测得到最终结果。实验结果表明,所提算法能在干扰背景存在的情况下有效检测