论文部分内容阅读
扬声器单元的力学振动可以由一组线性的传递函数和几何数据来描述,这些数据是通过测量辐射体(如锥体、半球形膜片、振动盆、活塞、平板等)上的若干个选择点得到的。这些分布式参数是对集总参数(包括T-S、非线性、热学参数)的有益补充,它使得锥体、扬声器单元与扬声器系统设计之间的联系易于理解,并开启了一种新的扬声器诊断方法。重点着眼于激光扫描技术和对数据的后处理。力学振动将会用到一个新的量来概述,即:累积加速度级(AAL),当没有声抵消出现时,它和声压级(SPL)是相当的。这个参数和其他导出的参数是模态分析和全新的分解技术的基础,这一方法使得力学振动和声压输出之间的关系更为明晰。最后,将指出分布式参数在有限元法或边界元分析法中的用法,并给出有益于扬声器设计过程的结论。
The mechanical vibration of a loudspeaker unit can be described by a set of linear transfer functions and geometrical data obtained by measuring several selected points on a radiator (eg cone, hemispherical diaphragm, vibrating bowl, piston, plate, etc.) owned. These distributed parameters are a useful addition to the lumped parameters including TS, non-linearity, and thermal parameters that make the connection between funnels, speaker units and speaker system design easy to understand and enable a new speaker diagnostics method. Focus on laser scanning technology and data post-processing. The mechanical vibration will be summed up in a new quantity, namely the cumulative acceleration level (AAL), which is comparable to the sound pressure level (SPL) when no acoustic cancellation occurs. This and other derived parameters form the basis for modal analysis and new decomposition techniques that make the relationship between mechanical vibration and sound pressure output clearer. Finally, the usage of the distributed parameters in the finite element method or the boundary element analysis method will be pointed out and the conclusion that is beneficial to the speaker design process will be given.