论文部分内容阅读
To meet the demands of continuous stream-line for component production in the thixo-forming industry, billet heating should be of high quality and in a controllable way. A 4-step inductive heating strategy for aluminum alloy A356 was performed. Thixotropic testing and microstructure analysis showed that a homogenous temperature distribution was achieved after tempera-ture-power-time optimization. Theoretical analysis was given concerning the thermal conductivity and heat capacity of A356 between conventional and semisolid casting microstructures. The experimental results show that the optimized 4-step strategy could be the best strategy for billet heating during the thixo-forming of aluminum alloy A356.
To meet the demands of continuous stream-line for component production in the thixo-forming industry, billet heating should be high quality and in a controllable way. A 4-step inductive heating strategy for aluminum alloy A 356 was performed. Thixotropic testing and microstructure analysis showed that a homogenous temperature distribution was achieved after tempera-ture-power-time optimization. Theoretical analysis was given concerning the thermal conductivity and heat capacity of A356 between conventional and semisolid casting microstructures. The experimental results show that the optimized 4-step strategy could be the best strategy for billet heating during the thixo-forming of aluminum alloy A356.