论文部分内容阅读
Silica whispering gallery mode(WGM) microcavities were fabricated by the buffered oxide etcher and potassium hydroxide wet etching technique without any subsequent chemical or laser treatments. The silicon pedestal underneath was an octagonal pyramid, thus providing a pointed connection area with the top silica microdisk while weakly influencing the resonance modes. The sidewalls of our microdisks were wedge shaped, which was believed to be an advantage for the mode confinement. Efficient coupling from and to the 60 μm diameter microdisk structure was achieved using tapered optical fibres, exhibiting a quality factor of 1.5×10~4 near a wavelength of 1550 nm. Many resonance modes were observed, and double transverse electric modes were identified by theoretical calculations. The quality factor of the microdisks was also analysed to deduce the cavity roughness. The wet etching technique provides a more convenient avenue to fabricate WGM microdisks than conventional fabrication methods.
Silica whispering gallery mode (WGM) microcavities were fabricated by the buffered oxide etcher and potassium hydroxide wet etching technique without any subsequent chemical or laser treatments. The silicon pedestal underneath was an octagonal pyramid, thus providing a pointed connection area with the top silica microdisk while weakly influencing the resonance modes. The sidewalls of our microdisks were wedge shaped, which was believed to be an advantage for the mode confinement. Efficient coupling from and to the 60 μm diameter microdisk structure was achieved using tapered optical fibers, exhibiting a quality factor of 1.5 x 10 ~ 4 near a wavelength of 1550 nm. Many resonance modes were observed, and double transverse electric modes were identified by theoretical calculations. The quality factor of the microdisks was also analyzed to deduce the cavity roughness. The wet etching technique provides a more convenient avenue to fabricate WGM microdisks than conventional fabrication methods.