论文部分内容阅读
为排除驾驶员在换道过程中存在的交通安全隐患,基于驾驶员操纵特性和交通环境状态分析,提出了一种能有效预测驾驶员换道行为的方法。依托自然道路条件下的实车实验,将驾驶员视觉特性与数据分析相结合,确定了意图时窗宽度为5 s。依据在车道保持与意图换道两阶段的操纵特性和交通环境等参数差异化分析,构建了换道行为预测的表征参数体系。引入二元Logistic模型,确定各参数的回归系数,并进行换道行为预测。研究结果表明:该模型可至少提前2. 5 s预测出换道行为;且换道行为起始时刻的预测精度为96. 34%。与基于视觉特性和