论文部分内容阅读
如何解决迁移学习中的负迁移问题并合理把握迁移的时机与方法,是影响迁移学习广泛应用的关键点.针对这个问题,提出一种基于相似度衡量机制的决策树自适应迁移方法(Self-adaptive transfer for decision trees based on a similaritymetric,STDT).首先,根据源任务数据集是否允许访问,自适应地采用成分预测概率或路径预测概率对决策树间的相似性进行判定,其亲和系数作为量化衡量关联任务相似程度的依据.然后,根据多源判定条件确定是否采用多源集成迁移,并将相似