论文部分内容阅读
提出一种新的模糊隶属度函数对标准模糊支持向量机进行改进,然后运用自适应遗传算法对改进后的模糊支持向量机进行参数优选,得到一种新的AGAIFSVM模型,并且将提出的模型应用于煤与瓦斯突出预测。实验结果表明,所提出的模型比BP神经网络、标准支持向量机和模糊聚类有更高预测精度和更强的稳定性,具有较大的实用价值。