论文部分内容阅读
为解决传统棉布生产工艺中瑕疵检测成本高、精度低、速度慢等问题,提出一种FS-YOLOv3(Four Scales YOLOv3)网络来自动检测棉布瑕疵.该网络结合K-Means++聚类算法,以交并比为距离度量获取较好尺寸的锚框,提高检测速度.设计了4个不同尺度的卷积特征图与深度残差网络中相应尺度的特征图进行融合,有效地学习样本特征.将Softer NMS算法作为预测框过滤机制,使得高分类置信度的边框位置更为准确.实验结果表明:使用FS-YOLOv3网络能有效提高低对比度、小尺度目标的棉布瑕疵检测精度