Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode

来源 :能源化学 | 被引量 : 0次 | 上传用户:sss03157017633
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The high degree of crystallinity of discharging intermediates of Li-S batteries (Li2S2/Li2S) causes a severe capacity attenuation at low temperatures.Herein,a sulfur-rich polymer is fabricated,which enables all the discharging intermediates to exist in an amorphous state without long-range order,promoting the substantial conversion of discharging intermediates and enhancing Li-S batteries\' performance at low temperatures greatly.This cathode material exhibits excellent performance both at room and low tem-peratures.Even under an extremely low temperature (-40 ℃),the discharge capacity can remain 67%of that at room temperature.Besides,in-situ UV/Vis spectroscopy and density functional theory calcula-tions reveal that this organosulfur cathode undergoes a new mechanism during discharge.Li2S6 and Li2S3 are the primary discharging intermediates that are quite different from conventional Li-S batteries.These results provide a new direction for a broader range of applications of Li-S batteries.
其他文献
Electrochemical nitrogen reduction reaction (e-NRR) under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia (NH3) synthesis.However,the e-NRR perform
Spectroscopic characterization of CO activation on multiple metal-containing catalysts remains an impor-tant and challenging goal for identifying the structure and nature of active site in many industrial pro-cesses such as Fischer-Tropsch chemistry and a
The wide use of manganese dioxide (MnO2) as an electrode in all-solid-state asymmetric supercapacitors(ASCs) remains challenging because of its low electrical conductivity.This complication can be circum-vented by introducing trivalent gadolinium (Gd) ion
Li-O2 batteries gain widespread attention as a candidate for next-generation energy storage devices due to their extraordinary theoretic specific energy.The semi-open structure of Li-O2 batteries causes many parasitic reactions,especially related to water
Tin phosphide (Sn4P3) is a promising anode material for sodium-ion batteries because of its relatively large theoretical capacity,appropriate Na+ alloying potential,and good cyclic stability.Herein,the Sn4P3 embedded into a carbon matrix with good rate pe
The performances of heterogeneous catalysts can be effectively improved by optimizing the catalysts via appropriate structure design.Herein,we show that the catalysis of cuprous sulfide can be boosted by con-structing the hybrid structure with Cu2S nanopa
A large database is desired for machine learning (ML) technology to make accurate predictions of mate-rials physicochemical properties based on their molecular structure.When a large database is not avail-able,the development of proper featurization metho
Ni-rich layered cathodes (LiNixCoyMnzO2) have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNixCoyMnzO2,which is mainly originated from the two-dimensional diffusion of Li ions in the Li slab and
Covalent organic frameworks (COFs) are emerging as powerful electrochemical energy storage/conversion materials benefiting from the controlled pore and chemical structures,which are usually determined by the regulation of the molecular building blocks,In
Proton exchange membrane fuel cells (PEMFCs) are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications [1].Recently,anion exchange membrane fuel cells(AEMFCs