论文部分内容阅读
提出一种基于深度学习的多模型(卷积神经网络和卷积深信度网络)融合目标跟踪算法.该算法在提取候选粒子方面,使用选择性搜索和粒子滤波的方法.CVPR2013跟踪评价指标(50个视频序列、30个跟踪算法)验证了:该算法在跟踪中能有效地缓解目标物体由于遮挡、光照变化和尺度变化等因素造成的跟踪丢失情况的发生.