论文部分内容阅读
为了提高图像配准算法对于模糊图像的配准性能,提出一种融合非线性尺度空间和空间余弦相似度的自适应模糊图像配准算法。该算法将非线性尺度空间理论应用于图像的局部特征提取,采用KAZE算法提取图像的特征点,以构成M-SURF特征描述符;利用空间余弦对图像特征点进行匹配,并且根据不同的图像特性进行自适应阈值匹配,以得到便于寻求最优变换关系的合理数量的匹配点对;最后采用RANSAC算法滤除误匹配点对,以提升算法精度。实验结果表明,该算法可以有效地提高模糊图像配准的匹配准确率和精度,准确率和精度比KAZE算法最大