论文部分内容阅读
差分演化(DE)是解决优化问题的非常有效的新兴智能算法,但它主要用于连续优化领域,至今尚不能象解决连续优化问题那样有效的处理组合优化问题。首先提出了离散DE用于组合优化问题,然后在离散DE中引入分布估计算法(EDA)来提高性能,把EDA抽样得到的全局统计信息和离散DE获得的局部演化信息相结合来产生新解,形成基于EDA的离散DE算法。为了保持种群多样性,在提出的算法中引入了位翻转变异操作。实验结果表明,EDA能大大提高离散DE的性能。