论文部分内容阅读
在遥感影像分类应用中,不同分类器的分类精度是不同的,而同一分类器对不同类别的分类精度也是不相同的。多分类器结合的思想就是利用现有分类器之间的互补性,通过适当的方法将不同的分类器之间进行优势互补,往往可以得到比单个分类器更好的分类结果。本文研究了如何在Matlab下采用最短距离分类器、贝叶斯分类器、BP神经网络分类器对影像进行分类,并采用投票法进行多种分类器结合的遥感影像分类,最后进行分类后处理。实验结果表明多分类器结合的遥感影像分类比单一分类器分类的精度高。