论文部分内容阅读
由于CME与CIR的太阳风/行星际磁场结构有所差别,所以在这两种太阳风/行星际结构触发的地球磁暴期间,太阳风等离子体与能量通过磁重联向地球内磁层的注入过程也不相同.因此对于CME引发的磁暴与CIR引发的磁暴,辐射带高能电子通量的变化有显著差异.通过SAMPAX卫星观测的数据,本文分别对54个CME触发的磁暴与26个CIR触发的重现性磁暴期间1.5~6.0MeV电子外辐射带的动态变化进行了研究.结果表明,在主相期间,对于CME磁暴,电子通量在6≤L≤7的区域出现了显著增强.在Dst指数(中值)达到最小值(-201nT)时,外边界的位置移动到L=4附近.对于CIR磁暴,主相期间,没有在6≤L≤7区域观察到通量的显著增强.而当Dst指数(中值)达最小值(-58nT)时,外边界的位置移动到L=5.5附近.在磁暴恢复相期间,对于CME磁暴,外辐射带的位置整体低于磁暴前,在6≤L≤7的区域也出现了电子通量的增强;对于CIR磁暴,外辐射带外边界的位置相比磁暴前有不明显的增高,并且在上述区域没有观察到通量的明显增强.我们发现在绝大多数情况下,1.5~6.0MeV电子的外辐射带电子通量对数衰减1/e截止廓线可以表示出外辐射带外边界的位置.在CME磁暴主相期间,对数衰减1/e截止纬度与Kp指数具有相关性(相关系数为-0.56).对于CIR磁暴,对数衰减1/e截止纬度与Kp指数也有较好的相关性(相关系数为-0.58).此外,CME磁暴主相期间,1.5~6.0MeV电子通量最大值的位置(L值)受到磁暴期间Dst指数最小值的控制;整体而言,对于上述两种磁暴,电子通量最大值的位置都随磁暴的增强而降低.多重磁暴是造成外辐射带相对论电子通量变化异常的重要原因之一.
Due to the difference between the solar wind / interplanetary magnetic field structures of CME and CIR, during the geomagnetic storms triggered by both solar wind / interplanetary structures, the injection process of the solar wind plasma and energy into the Earth’s interior magnetic layer through magnetic reconnection is not Therefore, for the CME-induced magnetic storm and the CIR-induced magnetic storm, there are significant differences in the radiative high-energy electron flux.According to the SAMPAX satellite observations, 54 CME-triggered magnetic storms and 26 CIR triggers are reproduced The results show that during the main phase, the electron flux increases markedly in the region of 6≤L≤7 for the CME storms, while the Dst index ( Median) reaches the minimum value (-201 nT), the position of the outer boundary moves to around L = 4. For the CIR storm, no significant enhancement of flux is observed in the region of 6 ≦ L ≦ 7 during the main phase, whereas when Dst When the index (median) reaches the minimum value (-58nT), the position of the outer boundary moves to around L = 5.5. For the CME storm, the position of the outer radiation band is lower than that before the storm in the condition of 6≤L Electron flux enhancement also occurred in the region of ≤7; CIR magnetic storm, the location of the outer edge of the outer radiation band compared with before the storms did not significantly increased, and no significant increase in flux observed in the above region.We found that in the vast majority of cases, 1.5 ~ 6.0MeV electron emission Logarithmic decay of electron flux The 1 / e cutoff line indicates the position of the outer radiation zone boundary. During the main phase of the CME storm, the logarithmic decrement of 1 / e latitude has a correlation with the Kp index (correlation coefficient -0.56 ). For CIR storm, the cut-off latitude of 1 / e logarithm also has a good correlation with Kp index (correlation coefficient -0.58) .In addition, during the main phase of CME storms, the location of the maximum electron flux of 1.5-6.0 MeV (L value) is controlled by the minimum Dst index during magnetic storms. For the above two types of magnetic storms, the location of maximum electron flux decreases with the increase of magnetic storms. Multiple magnetic storms are the result of the relative radiative band electron flux One of the important reasons for the abnormal change.