论文部分内容阅读
背景感知相关滤波(Background-aware correlation filters,BACF)算法有效地解决了相关滤波类跟踪算法中的边界效应问题,提升了训练样本集的质量和数量,能够精确估计目标的位置变化,从而提高了跟踪器的性能。然而为了检测尺度变化,BACF算法通过多次重复计算不同尺度的目标区域,严重影响了跟踪速度。本文在BACF算法的基础上,采用平移加尺度滤波的思想,设计独立的一维尺度滤波器,与BACF算法无缝结合。只需预测一次目标的位置变化,再利用尺度滤波器预测目标尺度变化。因为两个滤波