论文部分内容阅读
A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the impact of rock in the centre of the plate was established by Fabien Delhomme. By using this model, some finite element analyses are carried out in the present paper. Firstly, a plate impacted by a block is numerically simulated, the numerical results obtained from different mesh sizes are compared and the accuracy of the finite element model is verified. Then, the dynamic response of the plate impacted at the boundary and in the medium part is computed. By analyzing the stress in rebar, the most dangerous region of impact of plate was found. For a rectangular plate, the most dangerous region is at the corner of the plate when a block drops in. Finally, the whole deformation process of the plate under dropping block was simulated and a simplified definition (effect zone) to describe the deformation process in different positions of plate was given. From this study, it is found that the impact only affects heavily within the effect zone.
A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France). To decide the dimension of the plate used in SDR, an ANSYS model which could simulate the impact of rock in the center of the plate was established by Fabien Delhomme. By using this model, some finite elements analyses are carried out in the present paper. Firstly, a plate impacted by a block is numerically simulated, the numerical results obtained from different mesh sizes are compared and the accuracy of the finite element model is verified. Then the stress response of the plate impacted at the boundary and in the medium part is computed. For the stress of rebar, the most dangerous region of impact of plate was found. For a rectangular plate, the most dangerous region is at the corner of the plate when a block drops in. Finally, the whole deformation process of the plate under dropping block was simulated and a simplified definition (effect zone) to de scribe the deformation process in different positions of plate was given. From this study, it is found that the impact only affects heavily throughout the effect zone.