论文部分内容阅读
聚类算法在数据分析及数据挖掘等许多领域有广泛应用,在聚类方法中引入一种新的距离度量标准替代传统的Eu-clidean距离度量标准以提高其健壮性,并在此基础上提出基于粒子群算法(Particle Swarm Optimization,简称PSO)的聚类方法和基于量子行为的微粒群优化算法(Quantum-behaved Particle Swarm Optimization,简称QPSO)的聚类方法,然后将两种聚类方法应用于图像分割。实验结果表明,基于QPSO的聚类方法性能优于基于PSO的聚类方法。