基于最优评价的改进自适应粒子群算法

来源 :系统工程与电子技术 | 被引量 : 0次 | 上传用户:sxuuboo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在求解高维空间中复杂多峰函数的优化问题时,传统的粒子群算法在收敛速度和局部搜索能力等方面表现出严重不足。针对这些问题,提出了一种基于最优评价的改进自适应粒子群算法(IAPSO),引入了改进的速度迭代公式,利用对每次迭代后种群的一系列最优值的评价来控制惯性权重的增幅,并设置对速度和位置的变异机制来防止搜索陷入局部最优。相关实验表明,在对高维空间中的复杂多峰函数进行优化求解时,改进粒子群算法IAPSO的表现比常规粒子群算法更加优越。
其他文献
对含未知噪声方差阵的多传感器系统,用现代时间序列分析方法,基于滑动平均新息模型的在线辨识和求解相关函数矩阵方程组,可得到白噪声方差阵的在线估值器。在按状态分量标量