Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties

来源 :中国物理快报(英文版) | 被引量 : 0次 | 上传用户:y1271
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The accurate and rapid prediction of materials' physical properties,such as thermal transport and mechanical properties,are of particular importance for potential applications of featuring novel materials.We demonstrate,using graphene as an example,how machine learning potential,combined with the Boltzmann transport equation and molecular dynamics simulations,can simultaneously provide an accurate prediction of multiple-target physical properties,with an accuracy comparable to that of density functional theory calculation and/or experimental measurements.Benchmarked quantities include the Grüneisen parameter,the thermal expansion coefficient,Young's modulus,Poisson's ratio,and thermal conductivity.Moreover,the transferability of commonly used empirical potential in predicting multiple-target physical properties is also examined.Our study suggests that atomic simulation,in conjunction with machine learning potential,represents a promising method of exploring the various physical properties of novel materials.
其他文献
会议
为夯实学生对电场能的理解,引导学生进行深度学习,通过课堂活动链设计,分解科学探究过程,让学生逐渐从知道、感受、总结,到提炼,最终进行科学探究,根据学生认知特点有序地安
本文主要指出了当前高中物理教学中存在的部分典型伪科学及做假的实验教具,并对其科学原理的真伪性进行了剖析.
会议
会议
去年十二月中央财经委员会决定由中南区调拨贸易粮十五亿斤,兹经具体分配如下:河南省调上海大米七千八百万斤,杂粮二千二百万斤,调华北小麦一亿五千八百万斤,调西安小麦二千
会议
为在「三反」运动胜利的基础上,发动倚靠广大职工群众,全面展开爱国主义增产节约运动,除已进行会议布置外,特再根据中央中南与省委省府的指示作如下指示:(一)增产节约是建设
会议
“深度学习”因其理念与物理学科的核心素养达成高度相关而被越来越多的老师认可,“问题链”教学以其问题群具有较强的逻辑关系,对学生由浅层学习进入深度学习有重要的引领作