论文部分内容阅读
Let A be an abelian category,and (X,(Z),y) be a complete hereditary cotorsion triple.We introduce the definition of n-y-cotilting subcategories of A,and give a characterization of n-y-cotilting subcategories,which is similar to Bazzoni characterization of n-cotilting modules.As an application,we prove that if GP is n-GI-cotilting over a virtually Gorenstein ring R,then R is an n-Gorenstein ring,where GP denotes the subcategory of Gorenstein projective R-modules and GI denotes the subcategory of Gorenstein injective R-modules.Furthermore,we investigate n-costar subcategories over arbitrary ring R,and the relationship between n-I-cotilting subcategories with respect to cotorsion triple (P,R-Mod,I) and n-costar subcategories,where P denotes the subcategory of projective left R-modules and I denotes the subcategory of injective left R-modules.