带有Hatree和对数非线性项的Schrodinger方程非平凡解的存在性

来源 :河北科技大学学报 | 被引量 : 0次 | 上传用户:jiafeicp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:為了深入阐述变号势对对数非线性项和Hatree非线性项造成的影响,利用Ekeland变分方法,将方程转化为求能量泛函的临界点,然后利用Hatree非线性项的性质和对对数非线性项的技巧性处理,证明了带变号势,对数非线性项和Hatree非线性项的Schrodinger问题的能量泛函满足山路型结构,利用序列的有界性得到了(PS)条件。结果表明,结合山路结构,能够获得问题非平凡解的存在性。研究方法在理论证明得到了良好的预期结果,对研究带有双变号势的对数非线性项的Schrodinger方程解的存在性具有一定的借鉴意义。
  关键词:非线性泛函分析;Schrodinger方程;变号的势函数;对数不等式;变分方法;非平凡解
  中图分类号:O175   文献标志码:A   doi:10.7535/hbkd.2019yx06001
  Abstract:In order to expound the influence of sign-changing potential on logarithmic nonlinearity and Hatree nonlinearity. By the variational method, a weak solution to the problem is a critical point of the energy functional. Then, by the logarithmic inequality, the energy functional of Schrodinger problem satisfies the mountain geometry and (PS) condition. The existence of nontrivial solutions is obtained by mountain pass theorem. The research method has good expected results in theoretical proof and laid a good foundation for the study of Schrodinger problem with logarithmic nonlinearity with double sign-changing potential.
  Keywords:nonlinear functional analysis; Schrodinger equation; sign-changing potential; logarithmic inequality; variational method; nontrivial solution
  参考文献/References:
  [1] ELLIOTT H L. Existence and uniqueness of the minimizing solution of choquard\"s nonlinear equation [J]. Studies in Applied Mathematics, 1977, 57(2):93-105.
  [2] LIONS P L. The Choquard equation and related questions [J]. Nonlinear analysis:Theory,Methods & Applications, 1980, 4(6):1063-1072.
  [3] MOROZ V, SCHAFTINGEN J V. Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asympto-tics[J]. Journal of Functional Analysis, 2013, 265(2):153-184.
  [4] GAO Fashun, YANG Minbo. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents[J]. Journal of Mathematical Analysis and Applications, 2017, 448(2):1006-1041.
  [5] DAVID R, SCHAFTINGEN J V. Odd symmetry of least energy nodal solutions for the Choquard equation [J]. Journal of Differential Equations, 2016:S0022039617305193.
  [6] LI Guidong, LI Yongyong, TANG Chunlei, et al. Existence and concentrate behavior of ground state solutions for critical Choquard equation [J]. Applied Mathematics Letters,2019,81:96.
  [7] MOROZ V, SCHAFTINGEN J V. A guide to the Choquard equation [J]. Journal of Fixed Point Theory and Applications, 2017,19(1):773-813.
  [8] TIAN Shuying. Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity [J]. Journal of Mathematical Analysis & Applications, 2017,454(2):816-828.   [9] SQUASSINA M, SZULKIN A. Multiple solutions to logarithmic Schrodinger equations with periodic potential [J]. Calculus of Variations and Partial Differential Equations, 2015, 54(1):585-597.
  [10] KAZUNAGA T, ZHANG Chengxiang. Multi-bump solutions for logarithmic Schrodinger equations [J]. Calculus of Variations and Partial Differential Equations, 2017, 2(2):33-56.
  [11] ARDILA A H, SQUASSINA M. Gausson dynamics for logarithmic Schrodinger equations [J]. Asymptotic Analysis, 2017, 107(3/4):203-226.
  [12] JI Chao, SZULKIN A. A logarithmic Schrodinger equation with asymptotic conditions on the potential[J]. Journal of Mathematical Analysis and Applcations,2016, 437(1): 241-254.
  [13] CARRILLO J A, NI Lei. Sharp logarithmic Sobolev inequalities on gradient solitons and applications [J]. Communications in Analysis & Geometry, 2009, 17(4):721-753.
  [14] JIA Wenyan, WANG Zuji. Multiple solution of p-Laplacian equation with the logarithmic nnlinearity[J]. Journal of North University of China, 2019,40(1):26-33.
  [15] ZHAO Li, HUANG Yongyan. The existence of the solution for Kirchhoff problem with sign-changing potential and logarithmic nonlinearity [J]. Journal of Shaanxi University of Science, 2019, 37(3):176-184.
  [16] WANG Jun, TIAN Lixin, XU Junxiang, et al. Erratum to: Existence and concentration of positive solutions for semilinear Schrodinger-Poisson systems in R3[J]. Calculus of Variations and Partial Differential Equations, 2013, 48(1/2):275-276.
  [17] LI Yuhua, LI Fuyi, SHI Junping. Existence and multiplicity of positive solutions to Schrodinger-Poisson type systems with critical nonlocal term [J]. Calculus of Variations & Partial Differential Equations, 2017,56(5):134-151.
  [18] WANG Zhengping, ZHOU Huansong. Sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3[J]. Calculus of Variations & Partial Differential Equations, 2015, 52:927-943.
  [19] LIU Hongliang, LIU Zhisu, XIAO Qizhen. Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity[J]. Applied Mathematics Letters, 2017,79:176-181.
  [20] WILLEM M. Minimax theorems[J]. Progress in Nonlinear Differential Equations & Their Applications, 1996, 50(1):139-141.
其他文献
目的研究优化健康教育对于新生儿与产妇的作用及效果。方法选取2018年10月至2019年3月收治的新生儿602例,将常规性护理的301例新生儿作为A组,将优化健康教育的301例新生儿作
<正>苏政办发[2015]116号各市、县(市、区)人民政府,省各委办厅局,省各直属单位:发展学前教育是实现人的全面发展、终身发展的奠基工程,是顺应群众期待、促进社会公平的民生
<正>苏价服[2015]299号各省辖市、省直管县(市)物价局:为贯彻落实《国家发展改革委办公厅关于加快建立涉企经营服务收费目录清单等三项目录清单制度有关问题的通知》(发改办
【正】苏政发[2014]10号各市、县(市、区)人民政府,省各委办厅局,省各直属单位:根据《江苏省科学技术奖励办法》,省人民政府决定,授予"特殊地基土的力学特性与高速公路控制变
【正】各位代表:我受省人民政府的委托,向大会报告2013年全省国民经济和社会发展计划执行情况与2014年国民经济和社会发展计划草案,请予审议,并请列席会议的同志提出意见。一
目的探究经尿道输尿管镜联合经皮肾镜碎石术治疗复杂性上尿路结石的可行性及临床效果。方法选取68例复杂性上尿路结石患者作为研究对象,患者均于2017年4月至2019年4月入院接
【正】苏政办发[2013]191号各市、县(市、区)人民政府,省各委办厅局,省各直属单位:加强动物无害化处理,是推进动物疫病防控的有效措施,也是预防人畜共患病传染的主要手段。我
<正>苏食药监药通[2015]297号各市食品药品监管局,昆山、泰兴、沭阳县(市)市场监管局(食品药品监管局),省局泰州医药高新区直属分局,省食品药品监督检验研究院、省局认证审评
【正】各位代表:受省人民政府的委托,我向大会报告江苏省2013年预算执行情况与2014年预算草案,请予审议,并请省政协委员和列席会议的同志提出意见。一、2013年预算执行情况20
粪水性皮炎是肠造口术后最常见的并发症,发生粪水性皮炎的患者往往疼痛难忍,生活质量降低。本研究通过对粪水性皮炎发生的原因和护理进行综述,为临床护士预防和护理粪水性皮