论文部分内容阅读
设G是一个有限群,S是G的不包含单位元1的非空子集,定义群G关于S的Cayley(有向)图X:=Cay(G,S)如下:V(X)=G,E(X)={(g,sg)|g∈G,s∈S}.Cayley(有向)图X:=Cay(G,S)称为正规的,如果G的右正则表示R(G)在X的自同构群Aut(X)中是正规的.设G是4p阶二面体群(p为素数).考察了Cay(G,S)连通3度的正规性,并给出了这些图的全自同构群.