论文部分内容阅读
针对粒子群算法容易出现"早熟"的缺点,提出了一种改进的混合遗传粒子群(hybrid genetic particle swarm optimization,HGPSO)算法。在粒子群算法的迭代中引入淘汰机制,将满足淘汰条件的粒子与当前适应度最优的粒子进行多后代择优交叉和一定概率的变异操作,以期得到适应度更优的新粒子,代替被淘汰粒子。通过对4个典型函数的测试表明,该算法能够有效地克服"早熟"现象,提高了全局寻优的能力。将改进的算法用于Lorenz混沌系统的参数估计。仿真结果表明,即使在加入测量噪声的情