密度自适应的数据竞争聚类算法*

来源 :计算机科学与探索 | 被引量 : 0次 | 上传用户:skgoo1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有数据竞争聚类算法在处理密度不均匀数据集时聚类效果不理想的问题,提出了一种密度自适应的数据竞争聚类算法。首先,定义了一种局部密度自适应线段;然后,根据局部密度自适应线段计算出密度自适应相似度,密度自适应相似度不仅反映了数据的整体空间分布信息,还反映了数据点的局部信息,更加符合数据的实际分布;最后,将密度自适应相似度用于数据竞争聚类算法中。在人工和真实数据集上的仿真实验结果表明,新算法比现有的数据竞争聚类算法在处理密度不均匀数据集时,具有更高的聚类性能。
其他文献
代价敏感属性选择是数据挖掘的一个重要研究领域,其目的在于通过权衡测试代价和误分类代价,获得总代价最小的属性子集。针对经典回溯算法运行时间较长的缺点,结合分治思想,提出了
针对非监督线性差分投影(unsupervisedlineardifferentialprojection,ULDP)在特征提取过程中存在的不足,提出了基于多流形的非监督线性差分投影(multi-manifoldunsupervisedlinear