论文部分内容阅读
子空间聚类已经广泛应用于多个涉及高维数据聚类应用领域,受到机器学习研究者的广泛关注.子空间聚类方法是一种使用特征选择的聚类分析技术,通过选择重要特征子集实现对高维空间的低维表示,在实际应用中能够取得更好的性能,成为流行的高维数据聚类方法.与硬聚类方法相比,软聚类能够给出复杂数据更有意义的划分.扩展k-均值聚类并提出基于可靠性的正则化加权软k-均值新的子空间聚类方法(Reliability-based regularized weighted soft k-means clustering algorith