论文部分内容阅读
应用果蝇优化算法(FOA)对广义回归神经网络(GRNN)平滑参数spread值进行优化,充分利用果蝇优化算法收敛速度快及径向基函数调整参数少的优点,建立厂房结构的振动响应预测模型,同时结合反向传播神经网络(BP)、局部回归神经网络(ELMAN)对某厂顶溢流式水电站的厂房结构振动响应问题展开对比预测研究。通过比较三种神经网络的预测效果,最终得出:基于果蝇算法优化的广义回归神经网络(FOA-GRNN),在预测能力、学习速度上明显优于BP网络和ELMAN网络。说明运用FOA-GRNN神经网络预测厂房结构振动响应