论文部分内容阅读
提出了一种改进的均值移位红外目标跟踪算法,该算法融合了基于均值移位的梯度匹配搜索策略与基于特征分类的跟踪算法。以目标与局部背景灰度特征的似然比作为目标区域核直方图的权值,建立了改进的目标表征模型。以Bhattacharyya系数作为相似性度量,在均值移位框架下推导了应用该目标模型下移位向量的表达形式。同时,提出了基于跟踪复杂度估计的目标遮挡情况下的模型更新判别准则。实验结果表明,该算法能够提高目标像素灰度的移位权重,抑制背景干扰,对于低对比度红外目标的跟踪具有稳健的性能,在正确跟踪情况下平均Bhat