论文部分内容阅读
为了在保证结果精度的情况下加快运算速度,改进了矩阵补全的代表性算法——奇异值门限(SVT)算法.首先对于输入矩阵进行规整化处理,之后在每一步的迭代中使用奇异值分解算法对矩阵进行恢复.由于每个迭代步中奇异值分解的计算量很大,文中借鉴随机矩阵奇异值分解算法,提出使用块克雷洛夫迭代近似奇异值分解算法和子空间复用技术的快速SVT算法.使用彩色图像和电影评分矩阵对算法进行实验的结果表明,快速SVT算法在不影响图像恢复和评分数据预测效果的同时显著地缩短了计算时间;在图像恢复和电影评分预测的实验中,分别取得了高达