论文部分内容阅读
提出了一种基于排列熵和决策级多传感器数据融合的P2P僵尸网络检测算法。首先分别构建流量异常检测传感器和异常原因区分传感器:前者利用排列熵刻画网络流量的复杂度特征(该特征并不依赖于特定类型的P2P僵尸网络),通过利用Kalman滤波器检测该特征是否存在异常;后者利用TCP流量特征在一定程度上减弱P2P应用等网络应用程序对P2P僵尸网络检测的误差影响。最后利用D-S证据理论对上述传感器的检测结果进行决策级数据融合以获得最终的检测结果。实验表明,提出的方法可有效检测新型P2P僵尸网络。