论文部分内容阅读
经典粗集理论给出了不可识别、上近似、下近似、简式和核等概念,其核心思想是运用条件属性集导致的知识粒子来近似决策属性集导致的知识粒子,进而推导出规则。这些知识粒子的实质是根据存在于属性值问的等价关系得到的,而事实上可能存在某些属性,其属性值内部存在序关系,与其它某属性间存在语义关系,这样的属性称为标准。本文所研究的粗集方法,考虑标准所携带的这些信息,推导出含有序信息的规则,并探讨使推导的规则更加完全和一致。本文给出了含序粗集方法(CORS)的定义、数据分析以及规则生成方法,并提出了一种更加合理的质量近似公式