论文部分内容阅读
Objective: The effects of growth factors on wound healing have been studied extensively, however, their molecular and genetic mechanisms that regulate epidermal regeneration are not fully understood. In this study, we explore the cell reversion characteristics and epithelial stem cell distribution in human regenerated epidermis treated with recombinant human epidermal growth factor (rhEGF). Methods:Tissue biospies from 8 regenerated skins treated with rhEGF were used to evaluate the cell reversion and stem cell distribution in epidermis . The expression of β1 integrin, keratin 19 (K19), keratin 14 (K14) and keratin 10 (K10) in skins was detected with SP immunohistochemical methods. Another 8 biopsies from the regenerated epidermis treated without rhEGF, fetus, children and adults were used as the controls. Results: Immunohistochemical stain for β1 integrin and keratin 19 showed that there were some new stem cell islands in the epidermis treated with rhEGF. These cells were small, containing low RNA content and exhibiting positive expression with β1 integrin and K19 stain. They were isolated, bearing no anatomic relation with the epithelial stem cells in the basal layer. The serial identification experiments indicated that there were no similar stem cell islands in skins from normal adult skin, fetus or child’s skin and the regenerated epidermis treated without rhEGF. All of these results supported that these β1 integrin and K19 positive stain cells were the stem cells. Conclusions: The results indicated that these stem cell islands were the specific and individual cell structures in rhEGF treated wounds and rhEGF is the main factor in inducing the stem cell island formation. These results offer a direct evidence for epidermal cell reversion from the differentiated cells to undifferentiated stem cells in vivo and may be useful in the rational use of this growth factor to promote wound healing in clinic.
Objective: The effects of growth factors on wound healing have been studied extensively, however, their molecular and genetic mechanisms that regulate epidermal regeneration are not fully understood. In this study, we explore the cell reversion characteristics and epithelial stem cell distribution in human regenerated epidermis treated with recombinant human epidermal growth factor (rhEGF). Methods: Tissue biospies from 8 regenerated skins treated with rhEGF were used to evaluate the cell reversion and stem cell distribution in epidermis. The expression of β1 integrin, keratin 19 (K19), keratin 14 Results: Immunohistochemical stain for β1 integrin and keratin 19 (K14) and keratin 10 (K10) in skins was detected with SP immunohistochemical methods. Another 8 biopsies from the regenerated epidermis treated without rhEGF, fetus, children and adults were used as the controls. showed that there were some new stem cell islands in the epidermis treated with rhEGF. These cells were small, con taining low RNA content and exhibiting positive expression with β1 integrin and K19 stain. They were isolated, bearing no anatomic relation with the epithelial stem cells in the basal layer. The serial identification experiments indicated that there were no similar stem cell islands in skins from normal The results of these stem cell islands were the specific and individual cells structures in rhEGF treated wounds and rhEGF is the main factor in inducing the stem cell island formation. These results offer a direct evidence for epidermal cell reversion from the differentiated cells to undifferentiated stem cells in vivo and may be useful in the rational use of this growth factor to promote wound healing in clinic.