异构多分支网络超声图像自动诊断方法

来源 :电子科技大学学报 | 被引量 : 1次 | 上传用户:jwhyyx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超声(US)是乳腺结节的主要影像学检查和术前评估手段之一,然而由于其在良性和恶性乳腺结节图像上的相似表现形式,使得诊断结果在很大程度上依赖于医生的经验判断,以计算机辅助手段帮助医生提高诊断准确率逐渐成为当前的热点。该文提出了一种用于乳腺超声图像的良性和恶性分类的异构多分支网络(HMBN),该网络同时使用了图像信息(超声图像及造影图像)和非图像信息(包括患者年龄和其他6个病理特征)。还提出了一种适合该异构多分支网络的混合型损失函数,在附加角边距损失的基础上应用了最小超球面能量来提升分类精度。实验结果表
其他文献