论文部分内容阅读
稀疏保持投影(SPP)是最近提出的一种无监督降维方法,因此无法利用标号数据提供的监督信息。为此,对SPP进行了扩展,给出了两种监督型稀疏保持投影算法:基于稀疏保持的判别分析(SPP+LDA)和监督稀疏保持投影(S2PP)。前者通过在SPP变换的子空间内进行线性判别分析(LDA)达到利用数据间稀疏重建关系和监督信息的目的;后者借助数据标号直接修正SPP构建的稀疏重建图在SPP中自然地融入监督信息。分析了两种算法的优缺点,在两个常用的人脸数据集(Yale和AR)上验证了两者的可行性及有效性。