论文部分内容阅读
电力市场改革初期,月度竞价由于可供研究的数据少、环境变化大、市场参与者行为不确定等特点难以分析预测.本文将监督式机械学习算法与当前电力市场规则和竞价者行为特征相结合,提出了一种具有自适应能力的竞价预测方法,引入遗忘机制和惯性机制来模拟真实市场参与者竞价行为,设计了自我验证机制修正不合理的预测结果,改进了正则化参数,有效避免了过拟合的发生.本文实验算例采用广东月度竞价的实验市场数据,验证了所提方法的有效性.