论文部分内容阅读
众所周知 ,Clapegron蒸汽压方程是根据假设“数组ΔHV/RTC/ΔΖV 为常数 ,而与温度无关”推导得来的。为了阐述以上给出的假设的理由 ,本文提出如下论点 :“ΔHV/RTC 和ΔZV 函数实际上是和温度有关 ,而它们之间却存在一个简单的比例关系 ,即ΔHV/RTC ∝ΔZV。 1997年我们曾根据分子聚集理论导出汽化热方程ΔHV/RTC =h(1- pr/Tmr) 1/ 2 ;另外 ,Haggenmacher于 194 6年曾提出ΔZV 方程 :ΔZV=h(1- pr/T3 r) 1/ 2 。显然 ,上述两个方程表明 ,Clapeyron假设基本上是正确的。另外 ,本文还基于上述的比例规律导出一些有用的蒸汽压方程和汽化热方程
It is well-known that the Clapegron vapor pressure equation is derived from the assumption that “array ΔHV / RTC / ΔzV is constant, independent of temperature.” In order to illustrate the rationale for the hypotheses given above, the paper argues the following: "The ΔHV / RTC and ΔZV functions are actually temperature dependent and there is a simple proportional relationship between them, ΔHV / RTC αΔZV. 1997 We have derived the heat of vaporization equation ΔHV / RTC = h (1-pr / Tmr) 1/2 according to the molecular aggregation theory. In addition, Haggenmacher proposed the ΔZV equation in 194-6: ΔZV = h / 2. Obviously, the above two equations show that the Clapeyron assumption is basically correct. In addition, based on the above rule of proportion, some useful equations of vapor pressure and heat of vaporization