论文部分内容阅读
随着计算机技术和三维成像技术的发展,三维人脸识别因不易受光照、装扮变化的影响成为人脸识别和身份验证的新趋势,但是对于表情、姿态变化其识别率还是有待于改善,时间开销较长.本文提出基于稀疏表示原理,对人脸重要的特征鼻尖点进行提取,采用最近邻分类器进行分类识别.实验结果表明,对表情变化等具有较高的鲁棒性和识别效果,且时间开销极小,优于传统的三维人脸识别方法.