【摘 要】
:
Due to their very small size, nanoparticles can interact with all cells in the central nervous system. One of the most promising nanoparticle subgroups are very small superparamagnetic iron oxide nanoparticles (VSOP) that are citrate coated for electrosta
【机 构】
:
Institute of Cell Biology and Neurobiology,Center for Anatomy,Charité-Universit?tsmedizin Berlin,Ber
论文部分内容阅读
Due to their very small size, nanoparticles can interact with all cells in the central nervous system. One of the most promising nanoparticle subgroups are very small superparamagnetic iron oxide nanoparticles (VSOP) that are citrate coated for electrostatic stabilization. To determine their influence on murine blood-derived monocytes, which easily enter the injured central nervous system, we applied VSOP and carboxydextran-coated superparamagnetic iron oxide nanoparticles (Resovist). We assessed their impact on the viability, cytokine, and chemokine secretion, as well as iron uptake of murine blood-derived monocytes. We found that (1) the monocytes accumulated VSOP and Resovist, (2) this uptake seemed to be nanoparticle- and time-dependent, (3) the decrease of monocytes viability was treatment-related, (4) VSOP and Resovist incubation did not alter cytokine homeostasis, and (5) overall a 6-hour treatment with 0.75 mM VSOP-R1 was probably sufficient to effectively label monocytes for future experiments. Since homeostasis is not altered, it is safe to label blood-derived monocles with VSOP. VSOP labeled monocytes can be used to study injured central nervous system sites further, for example with drug-carrying VSOP.
其他文献
Traumatic brain injury (TBI) remains a major cause of disability among young adults in both civilian and military settings contributing to a high burden on healthcare systems (Badhiwala et al., 2019). Sequel of TBI, even mild injuries, include motor and s
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by the homozygous mutation or deletion of the survival motor neuron 1 (SMN1) gene. A second copy, SMN2, is similar to SMN1, but produces only ~10% SMN protein because of a single-point mutati
Tendon pathology is characterized by damage to the tendon structural integrity with disruption of collagen fibers (Nourissat et al., 2015). Acute tendon injuries show a macroscopic discontinuity, ranging from partial to complete tendon rupture. They invol
Bradykinin (BK) is an active component of the kallikrein-kinin system that has been shown to have cardioprotective and neuroprotective effects. We previously showed that BK postconditioning strongly protects rat hippocampal neurons upon restoration of spo
Pericytes, as the mural cells surrounding the microvasculature, play a critical role in the regulation of microcirculation; however, how these cells respond to ischemic stroke remains unclear. To determine the temporal alterations in pericytes after ische
Extracellular aggregation of amyloid-beta (Aβ) and intracellular tau tangles are two major pathogenic hallmarks and critical factors of Alzheimer\'s disease. A linear interaction between Aβ and tau protein has been characterized in several models. Aβ in
Extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) have previously been shown to protect against brain injury caused by hypoxia-ischemia (HI). The neuroprotective effects have been found to relate to the anti-inflammatory effects of EVs. H
Biological studies typically rely on a simple monolayer cell culture, which does not reflect the complex functional characteristics of human tissues and organs, or their real response to external stimuli. Microfluidic technology has advantages of high-thr
The initial mechanical damage of a spinal cord injury (SCI) triggers a progressive secondary injury cascade, which is a complicated process integrating multiple systems and cells. It is crucial to explore the molecular and biological process alterations t
Prion disease represents a group of fatal neurogenerative diseases in humans and animals that are associated with energy loss, axonal degeneration, and mitochondrial dysfunction. Axonal degeneration is an early hallmark of neurodegeneration and is trigger